ubutun24 安装 deepseek-r1
来源:原创
时间:2025-03-22
作者:脚本小站
分类:Linux
安装conda
下载:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
交互式安装:
bash ~/Miniconda3-latest-Linux-x86_64.sh
静默安装:
bash ~/Miniconda3-latest-Linux-x86_64.sh -b -u -p /root/miniconda3
激活环境:
手动执行:
eval "$(/root/miniconda3/bin/conda shell.bash hook)"
运行脚本初始化:在 ~/.bashrc 文件中已经包含了所有的初始化命令,只要加载这个文件即可。
source ~/.bashrc cat .bashrc ... # >>> conda initialize >>> # !! Contents within this block are managed by 'conda init' !! __conda_setup="$('/root/miniconda3/bin/conda' 'shell.bash' 'hook' 2> /dev/null)" if [ $? -eq 0 ]; then eval "$__conda_setup" else if [ -f "/root/miniconda3/etc/profile.d/conda.sh" ]; then . "/root/miniconda3/etc/profile.d/conda.sh" else export PATH="/root/miniconda3/bin:$PATH" fi fi unset __conda_setup # <<< conda initialize <<<
配置下载源:
生成 ~/.condarc 文件:用来配置下载源,高优先级
conda config --set show_channel_urls yes
修改下载源:.condarc 默认在用户的家目录下,在安装目录 miniconda3/ 下也有一个但是优先级低于 ~/.condarc ,用命令修改下载源修改的就是 ~/.condarc 这个文件。
手动修改:
vim ~/.condarc channels: - defaults show_channel_urls: true default_channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r custom_channels: conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
使用命令修改:
#全部清华园,备用 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch-lts conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/impleitks conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/deepmodeling conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/auto conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/biobakery conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/caffe2 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/qiime2
其他命令:
conda config --set auto_activate_base false 作用:禁用 Conda 的 base 环境自动激活。 conda config --remove-key channels 作用:删除 Conda 配置中所有自定义的软件源(channels)。
查看信息:
# conda info active environment : base active env location : /root/miniconda3 shell level : 1 user config file : /root/.condarc populated config files : /root/miniconda3/.condarc /root/.condarc conda version : 25.1.1 conda-build version : not installed python version : 3.12.9.final.0 solver : libmamba (default) virtual packages : __archspec=1=skylake __conda=25.1.1=0 __cuda=12.4=0 __glibc=2.39=0 __linux=6.11.0=0 __unix=0=0 base environment : /root/miniconda3 (writable) conda av data dir : /root/miniconda3/etc/conda conda av metadata url : None channel URLs : https://repo.anaconda.com/pkgs/main/linux-64 https://repo.anaconda.com/pkgs/main/noarch https://repo.anaconda.com/pkgs/r/linux-64 https://repo.anaconda.com/pkgs/r/noarch https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/noarch https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/linux-64 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/noarch package cache : /root/miniconda3/pkgs /root/.conda/pkgs envs directories : /root/miniconda3/envs /root/.conda/envs platform : linux-64 user-agent : conda/25.1.1 requests/2.32.3 CPython/3.12.9 Linux/6.11.0-19-generic ubuntu/24.04.2 glibc/2.39 solver/libmamba conda-libmamba-solver/25.1.1 libmambapy/2.0.5 aau/0.5.0 c/. s/. e/. UID:GID : 0:0 netrc file : None offline mode : False
安装显卡驱动 nvidia drivers
安装工具包:
apt update apt upgrade apt install build-essential dkms
避免开源驱动冲突:禁用 Linux 系统中的 Nouveau 开源显卡驱动(主要针对 NVIDIA 显卡),安装 NVIDIA 官方驱动必须禁用 Nouveau 才能正常安装。
vim /etc/modprobe.d/blacklist-nouv.conf blacklist nouveau blacklist lbm-nouveau options nouveau modeset=0 update-initramfs -u # 更新配置 # 重启后查看 lsmod | grep nouveau # 若无输出则表示成功
到官网下载驱动:
地址:
https://www.nvidia.cn/drivers/lookup/
安装:
chmod +x NVIDIA-Linux-x86_64-570.133.07.run sudo ./NVIDIA-Linux-x86_64-570.133.07.run
安装驱动:
方式一:
lspci | grep -i nvidia # 查看显卡型号 # 检测推荐驱动版本 ~# nvidia-detector nvidia-driver-570 apt install nvidia-driver- # 双击tab apt install nvidia-driver-570-server -y
方式二:
自动安装ubutun驱动:
sudo ubuntu-drivers autoinstall # Ubuntu 自动安装推荐驱动
安装CUDA
方法一:命令行直接安装
apt install nvidia-cuda-toolkit
方法二:去官网下载后安装
官方地址:
developer.nvidia.com/cuda-downloads
下载:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
安装:
sudo dpkg -i cuda-keyring_1.1-1_all.deb sudo apt-get update sudo apt-get -y install cuda-toolkit-12-8
查看是否安装成功:
~# nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Fri_Jan__6_16:45:21_PST_2023 Cuda compilation tools, release 12.0, V12.0.140 Build cuda_12.0.r12.0/compiler.32267302_0
安装vLLM
配置国内下载源:
mkdir -p ~/.pip vim ~/.pip/pip.conf [global] index-url = https://mirrors.aliyun.com/pypi/simple/ trusted-host = mirrors.aliyun.com pip config list
创建虚拟环境:
conda create --name llm python=3.10 conda activate llm # 禁止用deactivate
安装vllm:
pip install vLLM vllm --version
安装pytorch:
方式一:到官网下载到本地安装
http://download.pytorch.org/whl/torch
方式二:命令行安装
conda install pytorch
下载模型:
http://hf-mirror.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B/tree/main
测试代码:
# Qwen2-vLLM-Local.py import os from transformers import AutoTokenizer from vllm import LLM, SamplingParams # 设置环境变量(cpu环境需要单独设置,GPU环境不需要) #os.environ['VLLM_TARGET_DEVICE'] = 'gpu' # 模型ID:我们下载的模型权重文件目录 #model_dir = '/data/ModelSpace/Qwen2-0.5B' model_dir = '/root/model/' # 模型目录 # 初始化 Tokenizer tokenizer = AutoTokenizer.from_pretrained( model_dir, local_files_only=True, ) # 提示词 messages = [ {'role': 'system', 'content': '你是一个智能回答助手。'}, {'role': 'user', 'content': '天空为什么是蓝色的?'} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) # 初始化大语言模型 llm = LLM( model=model_dir, tensor_parallel_size=1, device='cuda', # CPU 无需张量并行,cpu填写cpu,gpu填写cuda max_model_len=32768, gpu_memory_utilization=0.95 ) # 超参数:最多512个Token sampling_params = SamplingParams( temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512 ) # 模型推理输出 outputs = llm.generate([text], sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f'提示词: {prompt!r}, 大模型推理输出: {generated_text!r}')
测试:
conda activate llm python llm-vLLM-Local.py